Welcome, Guest | Join the Revolution | Login

System Simulation

The Ultimate Arbiter of Product Performance

It All Comes Down to the System!

In the end, it all comes down to the system performance of a given system or systems of systems. The components may be optimized, but if the system architecture is wrong, or your control software is buggy, the product will flop.  Simulation is the perfect tool for system design and system verification and validation. Here, you’ll access the latest news, articles, presentations, videos, webinars, and success stories related to system simulation.

  • Open Standards

    Open standards enable innovation. Systems need standards in order to connect models from different domains into the cyber-physical system. Check out the Modelica language and the FMI Standard.

  • Cyber-Physics

    An ever larger value in a product comes from software. It can be for controls, autonomy, or in the cloud as part of the Internet of Things. For mobility, the leading software stack is AUTOSAR.
    Read More

  • Siemen Partners with Modelon

    Siemen Partners with Modelon

    Siemens PLM Software partners with Modelon, plans to integrate Modelon’s OPTIMICA Compiler Toolkit as the Modelica engine for Simcenter Amesim 17.

    View Summary

    The partnership between Modelon and Siemens will allow Simcenter users to use develop, reuse and integrate Modelica libraries with Simcenter Amesim native libraries for dynamic multi-physics systems modeling. As a result, Simcenter Amesim 17 will fully support the Modelica standard, benefit from optimized code generated by OPTIMICA, and continue utilization of the Simcenter Amesim solver for simulation while remaining compatible with all Simcenter Amesim platform capabilities. Additionally, support of Modelon industrial libraries will come in future Simcenter releases.

    View Blog Post
  • Modelon’s Hydraulics and Pneumatics Capabilities Available in ANSYS® TWIN BUILDER™

    Modelon’s hydraulics and pneumatics capabilities are now available within ANSYS Twin Builder. Learn more about the Fluid Power Library.

    View SummaryGet Content

    Modelon is pleased to continue its partnership with ANSYS by offering new Modelon-powered capabilities in ANSYS® Twin Builder™. The Twin Builder Fluid Power Library, a bundle of Modelon’s industry-leading pneumatics and hydraulics libraries, is currently available through ANSYS sales channels. The Fluid Power Library conveniently allows users to integrate pneumatic and hydraulic capabilities within their system models for simulation.

    View Blog Post
  • On-Demand Webinar: Integrating Carbon Capture & Storage Technology Using Simulation

    Carbon Capture and Storage (CCS) technology is steadily emerging as a leading technology for the decarbonization of large-scale commercial powerplants. In this blog, researchers of The Norwegian University of Science and Technology study the effectiveness and implementation of CCS technology using Modelon's modeling and simulation solutions.

    View SummaryGet Content

    Decarbonization and sustainable development of power systems have become top priorities in the power sector. In order to achieve an environmentally sustainable and stable power system, thermal power plants need to become more flexible, efficient, and produce lower specific emissions than what they do today. Therefore, one of the biggest challenges power sector companies face is successfully transitioning towards decarbonized power systems while being smart about investment and accounting for the variability of both renewable energy sources and demand.   

    Modelon teamed up with researchers from the Norwegian University of Science and Technology (NTNU) to prove how Modelon’s Thermal Power Library can be used to design a more flexible and decarbonized power plant. In this webinar, our presenters will walk us through their study of building a scalable plant model, using data from a large-scale pilot plant to validate their model, designing control structures, and effectively integrating Carbon Capture & Storage (CCS) technology to lower power plant emissions.

    View Webinar
  • Model-Based Systems Engineering for Aircraft Engines

    Model-Based Systems Engineering for Aircraft Engines

    Modelon’s newest library, the Jet Propulsion Library, provides the foundation for modeling and simulating jet engines along with the integrated model-based systems engineering of aircraft systems.

    View Summary

    The prime mover of an aircraft, the jet engine, is one of the most important subsystems of an aircraft. Jet engines provide primary power (thrust) and secondary power (to drive flight control, air conditioning, cabin lighting, etc.) to the aircraft. Performance and efficiency improvements are becoming increasingly difficult to achieve when focusing on the engine in isolation. In the past, engine improvements have largely been developed separately in incremental design cycles – these cycles have not considered the need to develop the total aircraft package as an entire unit. Today, aeronautical systems and their subsystems are becoming more and more integrated and therefore simulation models need to become further aligned to meet performance and efficiency needs.

    View Blog Post
  • Rimac’s Journey Towards Full Vehicle System Simulation

    Rimac, a Croatia-based automotive technology powerhouse, needed a more efficient and flexible way to evaluate multi-physics powertrain systems.

    Solution Providers:

    Modelon logo

    View Summary

    This case study details how Rimac used Modelon’s simulation and modeling solutions, such as the Modelon Electrification Library, to meet their electric modeling, battery modeling, and full vehicle system simulation needs.

    View Story
  • System Simulation in a heterogeneous World

    The arrival of the Functional-Mockup-Interface (FMI) has been a game changer by simplifying the combination of models from different tools.

    View SummaryGet Content

    Most of us know by now that there is not one single software tool that will solve all our simulation needs. Even if we narrow it down to system simulation, we will not find that One tool.

    Not so long ago, handling different aspects of product design with separate tools was not a major problem.  But as competitive pressure builds to get products to market faster, the game is changing.

    A major key to success is being able to integrate subsystems into system simulations early in the design process. This enables organizations to understand and assess system behavior, as opposed to component or subsystem behavior, to avoid flaws that become costly to correct in later stages.

    View Article
  • Integrating Executable Requirements to Accelerate Design Iterations

    Executable requirements speed up the system level verification and validation process

    View Summary

    This blog promotes the idea of connecting MBSE and MBD more seamlessly than was previously possible. Using recent results from the ITEA3 EU project MODRIO, a Modelica Library prototype to represent executable requirements is now available, and we have used this library to demonstrate the workflow to develop a simplified version of a vehicle thermal management control system to reduce fuel consumption.

    View Blog Post
  • Meet FMI’s New Companion Standard, SSP

    This blog post is relevant for those who are familiar with the Functional Mock-up Interface and are interested in learning about the emerging companion standard, System Structure Parameterization (SSP).

    View SummaryGet Content

    SSP stands for System Structure and Parameterization. The standard defines an open format for describing systems of interconnected FMUs and the parameterization of such systems. It can also specify multiple configurations of a given system.

    SSP is developed as a companion standard to FMI, therefore it is not to be part of the FMI standard itself. Standardization is driven by researchers in the FMI community and has attracted a large amount of interest from industry. Development of SSP has been on-going for a few years, and the first release is scheduled for early 2018. Many tool vendors have begun preparing and users are eagerly waiting.

    View Blog Post
  • Reviewing Architecture-Based Approaches for Vehicle Modeling

    The Modelica language offers first class support for representing system architecture in models. This enables both architecture exploration and the development of product families.

    View SummaryGet Content

    All Modelon libraries are developed to adhere to the open-standard, Modelica language. We, at Modelon, thrive in this language standard for many reasons and fully leverage it in the use of templates and model architectures to rapidly create models and model variants. Modelon’s Vehicle Dynamics Library utilizes this template-based approach in full vehicle modeling. There is even the VehicleInterfaces library that attempts to provide common interfaces for use in vehicle simulation

    View Blog Post
  • What is FMI?

    FMI stands for Functional Mock-up Interface. It is an open standard for exchanging dynamical simulation models between different tools in a standardized format.

    View Summary

    FMI stands for Functional Mock-up Interface. It is an open standard for exchanging dynamical simulation models between different tools in a standardized format.

    The value of model-based development and investment in a simulation model portfolio increases tremendously when the models can be reused in different contexts.

    The FMI standard specifies an open format for exporting and importing simulation models. This means that you can select the tool best suited for each type of analysis while keeping the same model. You can also share your model with colleagues who can reuse it for other purposes, using tools that match their needs, skills, and preferences.

    View Blog Post
  • Analysis Template Development at NASA Langley

    Achieving safe, robust, and feasible Democratization at NASA Langley Research Center.

    Solution Providers:

    View Summary

    From the CAASE 18 conference, this presentation outlines NASA Langley’s Democratized Simulation implementation and how challenges were overcome with intelligent templates.

    View Story
  • Using an Intelligent Template to Analyze a Complex Optical System

    This NASA Langley case study demonstrates how and why a simulation template was used to aid in the analysis and design of a complex space-borne electro-optical sensor.

    View SummaryGet Content

    Structural-Thermal-Optical-Performance (STOP) Model Development and Analysis of a Field-widened Michelson Interferometer

    An integrated Structural-Thermal-Optical-Performance (STOP) model was developed for a field-widened Michelson interferometer which is being built and tested for the High Spectral Resolution Lidar (HSRL) project at NASA Langley Research Center (LaRC). The performance of the interferometer is highly sensitive to thermal expansion, changes in refractive index with temperature, temperature gradients, and deformation due to mounting stresses. Hand calculations can only predict system performance for uniform temperature changes. An integrated STOP Simulation Template was developed to automate and investigate the effects of design modifications on the performance of the interferometer in detail, including CTE mismatch, and other three- dimensional effects.

    The STOP Template was developed using the Comet SimApp Authoring Workspace which performs automated integration between Pro-Engineer®, Thermal Desktop®, MSC Nastran™, SigFit™, Code V™, and MATLAB®. This is the first flight project for which LaRC has utilized Comet, and it allows a larger trade space to be studied in a shorter time than would be possible in a traditional STOP analysis. This paper describes the development of the STOP Template, presents a comparison of STOP results for simple cases with hand calculations, and presents results of the correlation effort to bench-top testing of the interferometer. A trade study conducted with the STOP model which demonstrates a few simple design changes that can improve the performance seen in the lab is also presented.

    This paper was published in the 2014 Conference Proceedings of the SPIE.

    View ArticleDownload
  • Altair’s Open-Architecture Integrated CAE Platform Supports Conceptual and Systems Design

    Altair’s Open-Architecture Integrated CAE Platform Supports Conceptual and Systems Design

    Engineering.com's Shawn Wasserman writes about Conceptual and Systems Design Fuels Open-Architecture Integrated CAE.

    View Summary

    There is a need to bring simulation into conceptual design. And not just any simulation, but multiphysics and systems level simulations. By conducting these assessments earlier, teams are able to catch errors early in the design cycle. This will help to reduce costly changes to the design if prototypes were to fail.

    View Blog Post
  • Model Based System Engineering (MBSE) for Laser Weapons Systems

    The role of intelligent templates to speed the development of laser weapon systems.

    View SummaryGet Content

    Comet’s Malcolm Panthaki together with Steve McCoy of TimeLike Systems, LLC discuss the role of intelligent templates (Simulation Applications) to speed the development of laser weapon systems.

    View PresentationDownload