Welcome, Guest | Join the Revolution | Login

Digital Twins/IIoT

Bringing the business benefits of engineering simulation (CAE) to the entire product performance life-cycle (PPL)

What are Digital Twins? IIoT? Why Bother?

As is true with any emerging field of technology, Digital Twins is just now coalescing into a clearer definition of what it actually means in practice. Many market observers and vendors have offered up their views on what Digital Twins means to them. The ingredients have been around for a while, but their synergistic combination is just now bearing initial business fruit. Key enablers are the increasing accuracy of CAE models, the declining costs of high-performance computing, expanding cloud accessibility, and low-cost sensors.

What is IIoT? IoT (Internet of Things) is just connecting physical devices/systems to each other via the internet (think: your home internet-connected thermostat and an app on your smartphone that enables you to observe and change the temperature in your home from anywhere on earth if you have an internet connection). If the devices and connections and data transfer via the internet are for business/industrial systems, that’s the INDUSTRIAL Internet of Things. A lot more detailed and involved, but the same basic idea. When one of the “things” is a current/updated physics/simulation-based digital model, that’s where IIoT plays a role in Digital Twins.

Some Digital Twins Definitions

  • Success Stories

    What good is a revolution if it doesn’t result in useful change? See how companies are achieving significant time savings with measurable improvements in consistency, accuracy & repeatability…READ MORE

  • Coming of Age

    Digital Twins have been around for a while, but they are just beginning to bear fruit. Key enablers are the increasing accuracy of simulation, lower Cloud computing costs and accessibility, and low-cost sensors.
    READ MORE

  • Make an impact in the real world with Digital Twins

    Make an impact in the real world with Digital Twins

    Let's discuss the importance of keeping your digital twins in sync with real products. Models so accurate they’re a digital twin of the product you’re creating can help you throughout the design and development process. 1D models can help you determine the best architecture for your multi-physics system, 3D models can help you design into the details, and testing can help you improve modelling realism. Combining all the three technologies gives you the highest possible accuracy while making design decisions. But in today’s world the design job isn’t done when you ship. You have to be able to take feedback, track how products are used – with detailed data coming from the increasing numbers of sensors in modern devices – and then use that to support, maintain and improve the products you have out in the market, as well as incorporating all that information into your next generation. That means keeping your digital twins in sync with the real products, even once they’re in customers’ hands.

    View Article
  • Revolutionizing Food & Beverage Production with the Digital Twin and Industrial IoT

    How can food and beverage companies use the digital twin and industrial IoT to dramatically improve production performance? This eBook shares the value of the digital twin and IIoT for companies that produce food and consumer packaged goods. Then, it shares some practical examples and advice to get started down the path to streamline R&D and new product development, optimize production plans, increase performance, gain production intelligence, improve quality, and compete as an integrated supply chain.

    View Article
  • Benefit from digital twins at any IoT maturity

    In a commissioned study of IoT decision makers conducted by Forrester Consulting on behalf of Siemens in May 2019, respondents of varied IoT maturity levels recognized that digital twins can continuously improve their product offerings and improve product quality.

    View Article
  • Digital Twins: Driven by Physics-Based Models

    Digital Twins: Driven by Physics-Based Models

    Karen Willcox is a leading aerospace researcher and expert in simulation-based engineering who specializes in the aerospace industry. Her work on simplified simulation models has made it possible to accelerate the development and design of complex systems.

    View Article
  • Digital Twins in the Hot Seat: Realizing Great Expectations

    PREVIOUS WEBINAR AVAILABLE ON DEMAND The phrase “digital twin” has become the be-all-and-end-all of manufacturing buzzwords, stirring up Utopian views on what it can do for predictive maintenance, simulation and more. But how is a digital twin different from a 3D CAD product model? Can it ever live up to its full potential? Is anyone really making use of digital twins? In this LIVE webcast, DE challenges panelists to discuss: a no-nonsense definition of digital twins; the types of products that make sense as digital twins; real-world examples of digital twins in operation.

    View Webinar
  • How to Quickly Create a Simulation-Based Digital Twin of an IIoT-Connected Product

    Digital twins are virtual representations of physical products. They have the ability to unlock value and optimization throughout a product’s lifecycle. By leveraging real-world data from IIoT-connected product and physics-based simulations, digital twins can better inform and predict product performance. This enables users to develop new designs, operations and controls to optimize performance, reduce downtime and enable service-based products — often without the customer needing to upgrade hardware. The technology to get an IIoT digital twin running is available, however, many organizations are having a hard time implementing and connecting all of the digital, physical and data assets together. With the help of ANSYS Twin Builder and PTC ThingWorx, engineers can simplify the creation of digital twins using physics-based simulations.

    View Blog Post
  • Why digital twins will be the backbone of industry in the future

    Why digital twins will be the backbone of industry in the future

    For industry and the internet of things (#IoT), digital twins, offering virtual representations of real-world products will be the innovation backbone of the future. Entire systems can be simulated and tested long before a physical prototype has been built. Even operation of existing systems can be further optimized using a #DigitalTwin. Imagine the extraordinary possibilities merging them with artificial intelligence (#AI). Industry experts for digital twins are already using all these possibilities in concrete applications. Siemens Stories on Digital Twin: https://sie.ag/2FSldHZ Make use of it: https://sie.ag/2XcV2q8

    View Video
  • Digital Twins: Driven by Physics-Based Models

    Karen Willcox is a leading aerospace researcher and expert in simulation-based engineering who specializes in the aerospace industry. Her work on simplified simulation models has made it possible to accelerate the development and design of complex systems. Karen E. Willcox is Director of the Oden Institute for Computational Engineering and Sciences and a Professor of Aerospace Engineering and Engineering Mechanics, at the University of Texas at Austin. She holds the W. A. “Tex” Moncrief, Jr. Chair in Simulation-Based Engineering and Sciences and the Peter O'Donnell, Jr. Centennial Chair in Computing Systems. Prior to joining the Oden Institute in 2018, she spent 17 years as a professor at the Massachusetts Institute of Technology, where she served as Professor of Aeronautics and Astronautics, the founding Co-Director of the MIT Center for Computational Engineering, and the Associate Head of the MIT Department of Aeronautics and Astronautics. She is also an External Professor at the Santa Fe Institute.

    View Article
  • Mathematics a key enabler for Digital Twins

    Industrial research requires simulation experts with a passion for digital twins. In the race to innovate, their enthusiasm makes the crucial difference.

    View Presentation
  • Digital Twins for As-Maintained Configuration Management Part 1

    From RevSim sponsor PLM Alliances' principal Rich McFall comes this excellent CMSights Blog: In this month’s CMsights we asked Configuration Management practitioner, standards influencer, trainer, and author Kim Robertson to help us distill all the hype about digital twins and digital threads so we can understand their impact on as-maintained configuration management for long-life aerospace & defense equipment. Kim Robertson has over 39 years of experience in the A&D sector and is a co-author of “Configuration Management: Theory, Practice and Application” which is being used as the text for a graduate level course in C&DM at the Technical University of Eindhoven. He holds a CMPIC Configuration Management Principles and Implementation certification and is a National Defense Industrial Association (NDIA) Certified Configuration Data Manager (CCDM). Kim is a member of the SAE International G-33 committee for CM Standards and worked on Revision C of SAE/EIA-649.

    View Blog Post
  • Why digital twins will be the backbone of industry in the future

    For industry and the internet of things (#IoT), digital twins, offering virtual representations of real-world products will be the innovation backbone of the future. Entire systems can be simulated and tested long before a physical prototype has been built. Even operation of existing systems can be further optimized using a #DigitalTwin. Imagine the extraordinary possibilities merging them with artificial intelligence (#AI). Industry experts for digital twins are already using all these possibilities in concrete applications.

    View Video
  • From simulation powered design to predictive digital twins

    From simulation powered design to predictive digital twins

    EASA's Sebastian Dewhurst discusses how much faster the learning process would be if an algorithm "knew". There would be far fewer failures early on, and far less data would be required.

    View Blog Post
  • Digital Twins in the Hot Seat: Realizing Great Expectations (June 19th, 2 PM EDT)

    The phrase “digital twin” has become quite the manufacturing buzzword, stirring up Utopian views on what it can do for predictive maintenance, simulation and more. But how is it different from a 3D CAD product model? Can it ever live up to its full potential? In this LIVE webcast, DE engages expert panelists to discuss the topic.

    View Webinar
  • Phoenix Contact Electronics GmbH: Fail-Safe Digital Twin

    Configurable safety relays help prevent injuries and damage in factory automation systems by cutting off electrical power in response to data received from sensors. When a safety relay fails, the production line must be halted until the relay can be repaired or replaced, resulting in expensive downtime.

    View Article
  • Simulation Applications Enable Digitalization at ABB Traction Motors

    Industry 4.0 and digital twins are buzzwords we hear on a daily basis. But how far have companies come, and how does COMSOL come into play in the new era? Here, we will look into one successful case, where ABB Traction Motors intends to make mass customization available by using simulation applications for electric motor design. By turning high-fidelity multiphysics models into simulation applications, new analysis capabilities are planned to be available to several departments, from product design to sales.

    View Article
  • COMSOL Blog (Ed Fontes): Digital Twins: Not Just Hype

    COMSOL Blog (Ed Fontes): Digital Twins: Not Just Hype

    COMSOL Blog: "Is the term “digital twin” just hype, or a trick to get a new angle to sell modeling software? In this blog post, we discuss the difference between models, applications, and digital twins. We conclude that although the term has been misused to a certain extent (in relation to the original formulation), there is substance behind it."

    View Article
  • 3 “Digital Twin” Stocks for Your Portfolio

    Growth in the Internet of Things is spurring interest in digital twins. Here's how you can make money from it.

    View Article
  • Virtual Sensors in Digital Twins

    "By definition, a virtual sensor is a type of software that, given the available information, processes what a physical sensor otherwise would. It learns to interpret the relationships between the different variables, and observes readings from the different instruments. Think of it as a kind of a “ghost” of the physical sensor." (Chad Jackson)

    View Blog Post
  • NAFEMS European Keynote on Digital Twins

    At the NAFEMS European Conference in Budapest in October 2018 (focus topic: Multiphysics Simulation), the Moderator of the Digital Twins "How It Works" area of Revolution in Simulation (Dennis Nagy) presented a keynote on the definitions and current status of Digital Twins. Take a look.

    View Presentation